sorry that happened to your family.
they are now starting trials on mrna vaccines against pancreatic cancer but it sounds complicated.
After a patient has a pancreatic tumor surgically removed, the tumor is genetically sequenced to look for mutations that produce the best neoantigen proteins — that is, the neoantigens that look the most foreign to the immune system. The vaccine is manufactured with mRNA specific to these proteins in that individual’s tumor. While the vaccine is being made, the patient gets a single dose of a
checkpoint inhibitor drug. We think checkpoint inhibitors can work in conjunction with these vaccines to boost immune responses to tumors.
When the mRNA vaccine is injected into a person’s bloodstream, it causes immune cells called dendritic cells to make the neoantigen proteins. The dendritic cells also train the rest of the immune system, including T cells, to recognize and attack tumor cells that express these same proteins. With the T cells on high alert to destroy cells bearing these proteins, the cancer may have a lower chance of returning.
In December 2019, we enrolled the first patient in a clinical trial to test if this vaccine was safe. The process to make the vaccines was challenging. For example, the COVID-19 vaccines are not personalized — each vaccine is the same — so it is easy to make them in large batches. The mRNA cancer vaccine must be made individually for each patient based on their tumor. To do this, we must perform a very complex cancer surgery to take out the tumor, ship the sample to Germany, have them sequence it, make the vaccine, and then send back to New York — all within a short timeframe. Thankfully, we were up to the task and just finished enrolling our target total of 20 patients nearly a year ahead of schedule. If all goes well, we plan to conduct larger studies in the future to test mRNA vaccines in cancer patients.